Here’s the explanation of the physics they gave:
Each nanowire was less than one-thousandth the diameter of a human hair, wide enough that an airborne water molecule could enter, but so narrow it would bump around inside the tube. Each bump, the team realised, lent the material a small charge, and as the frequency of bumps increased, one end of the tube became differently charged from the other.
"So it’s really like a battery,” says Yao. “You have a positive pull and a negative pull, and when you connect them the charge is going to flow.”
American southeast could single handedly power the country
except for the pollen. Nanopores / tiny holes seem like they’d get fouled up by dust and things pretty quickly.
really interesting idea, just wonder about the real world operating environment issues.
One thing that hasn’t been mentioned here is that at a large scale this probably has significant impacts on weather patterns.
Wow. Presumably coastal northern communities could be big beneficiaries of this in the future. Lets hope it’s not literal vapourware
It would be amazing if this technology is able to scale and go down in cost. There are so many possible implementations, it would be a really great way of creating a more sustainable future.
It won’t (my personal totally empty prediction). To get humidity in larger scale it means getting air flow. Air flow in sufficient numbers doesn’t come out of no where. Usually with this kind of stuff one quickly finds one needs just insane amount of flow to scale meaning big blower fans and then you find you spend all the energy you produce running the fans and other needed ancillary equipment.
“The beauty is that the air is everywhere,” says Yao. “Even though a thin sheet of the device gives out a very tiny amount of electricity or power, in principle, we can stack multiple layers in vertical space to increase the power.”
On the first sentence… Sahara and Gobi would like to disagree on the tech working everywhere.
And when you start stacking the layers you need pressure to push the air through the layers and so on meaning, supply fans. Otherwise eventually on big enough system you find… the system sucks all the moisture out of the air locally and then no more electricity. They aren’t pulling energy out of air, but out of humidity . First is plentiful in atmosphere, second is at times very finite quantity locally. Sure on the wider atmosphere the humidity is plentiful, but again how you get that humidity to the device constantly. There needs to be airflow. With small enough device like those micro watts, well the humidity present ambiently is enough, since it consumes next to nothing. Start to scale up and well the ambient humidity is not enough. Not unless you are at windy sea front at which point… why not just put up a wind turbine and a sea front sea wave power station.
It might find utility as small local power source with not much power required, but grid scale thing it most likely won’t be. aka it isn’t hog wash, but when they start talking “yeah, but we put 100k of these disks in a stack and it will be this much power” you must start asking “so how many kilogram of H2O is that thing ingesting per minute, is there that much H20 weight in the air in the first place. If not how big fans and turbine you need to drive new moist air to it”.
Is it possible that this could be included in modern wind turbines to increase efficiency?
Not atleast to the blades, this needs air to flow through it, wind turbines need air flow to push the blades. Exact opposite needs. Any flow through thing like this would cause either loss of power as the blade itself or source of drag as ancillary to the blades.
Like one could put one next to wind turbine, but question is their sense in it. Why not just use the turbines directly and put up extra turbines at expense of this machine.
They would have to have amazing full cycle efficiency to make it work. Not like that doesn’t happen at times like heat pump powered by electricity being better than direct electric heating. However as said they would have to show pretty amazing efficiency numbers and at scale. Just because it works in small scale in lab doesn’t mean it works at large scale or outside of sterile lab environment.
The device they have come up with is the size of a thumbnail, one-fifth the width of a human hair, and capable of generating roughly one microwatt – enough to light a single pixel on a large LED screen.
So probably only going to be usable for low power devices for a while
The size almost seems like a feature. If it’s durable at all, you make a scale-maile coat that dehumidifies the sweat off of you and provides power for some sensors or something? The article mentions a washing machine size box that would power your whole house (but I’ll bet getting humidity to the middle would be a challenge for that form factor.
Imagine these being built into existing air conditioning units. In the right area they could reasonably power themselves.
Depends on if it can scale and how far apart each has to be from another. A single windmill is not as impressive but you get a field of them you generate much more, hopefully it can get closer to a solar panel and be spread along a large are.
Imagine dead space being utalized as a supliment.